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Abstract 

Introduction For researchers and medical simulation trainers, measuring team dynamics is vital for providing 
targeted feedback that can lead to improved patient outcomes. It is also valuable for research, such as investigating 
which dynamics benefit team performance. Traditional assessment methods, such as questionnaires and observa‑
tions, are often subjective and static, lacking the ability to capture team dynamics. To address these shortcomings, this 
study explores the use of physiological synchrony (PS) measured through electrocardiogram (ECG) data to evaluate 
team dynamics automated and in high‑resolution.

Methods A multicentre observational field study was conducted involving 214 medical first responders dur‑
ing mixed reality (MR) mass casualty training sessions. Participants were equipped with electrocardiogram (ECG) 
sensors and MR gear. The study measured dyadic PS using heart rate (HR), root mean square of successive differences 
(RMSSD), and standard deviation of NN intervals (SDNN). Data were collected at high frequency and analysed using 
dynamic time warping (dtw) to assess fluctuations in PS.

Results Findings indicate that PS varies significantly by task nature, with higher synchrony during cooperative tasks 
compared to baseline. Different ECG metrics offered unique insights into team dynamics. Proximity and scenario 
conditions influenced PS, with closer teamwork leading to higher PS. Smaller sampling intervals (e.g. 5 s) provided 
a detailed view of PS fluctuations over time.

Discussion The results demonstrate the potential of PS as an indicator of team performance and cohesion. High‑res‑
olution monitoring provides detailed insights into team dynamics, offering high‑resolution feedback that traditional 
methods cannot provide. The integration of physiological measures into training programmes can enhance team 
performance by providing objective, high‑resolution data.

Conclusion This study shows that PS, measured by ECG data, is sensitive to medical team activities, offering insights 
into team dynamics. Different ECG metrics highlight various aspects of team performance, and high‑resolution moni‑
toring captures detailed dynamics. Further research is needed to validate these findings across diverse scenarios. This 
approach could improve training methodologies, resulting in better‑prepared medical teams and improved patient 
care outcomes.
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Introduction
The measurement of team dynamics is of great impor-
tance, particularly in healthcare, as it enables the gener-
ation of complementary feedback. Providing structured 
feedback, such as during a debriefing after a team train-
ing, is imperative for continuous team improvement 
and performance, thereby enhancing patient safety 
[1–3]. For this, debriefing emphasises guided reflection, 
allowing participants to analyse and reinforce learning, 
which is critical for improving team dynamics and per-
formance [4–6]. Besides the training context, research 
into team dynamics is also of great interest, such as the 
study of factors underlying and reinforcing team per-
formance [7, 8].

Team dynamics, as explained by team theory, encom-
pass complex interactions and coordination processes 
essential for team performance, especially in high-stakes 
environments [9]. Frameworks like the input-process-
outcome model and team adaptation theory provide 
insight into how teams adapt and maintain cohesion 
under pressure, achieving shared goals even amid chang-
ing demands [9, 10].

Traditionally, structured debriefing sessions are used 
to provide feedback post-training, allowing participants 
to analyse and reinforce learning from specific scenar-
ios. However, real-time feedback is increasingly sought 
in high-stakes environments, where capturing team 
dynamics as they occur can provide valuable, immedi-
ate insights. PS offers potential in this regard, serving 
as a data-driven, objective feedback mechanism that 
could complement traditional methods by highlighting 
instances of team cohesion and coordination in real time 
[6, 11].

Traditional methods of assessing team dynamics and 
performance typically involve questionnaires or obser-
vations [12–14]. While these methods are easy to use, 
they are subjective and prone to bias [15]. In addition, 
such assessments are often retrospective and static, 
overlooking the dynamic nature of team dynamics that 
evolve over time, making it difficult to understand how 
outcomes or improvements were achieved [16]. In con-
trast, temporal methods for measuring team dynamics 
provide complementary insights into how team dynam-
ics unfold and influence outcomes at different stages [17]. 
One prominent approach is real-time behavioural cod-
ing, which involves structured, in-the-moment coding 
of team interactions, allowing for immediate analysis of 
group dynamics and ensuring data reliability and validity 
in dynamic settings [18–20]. Complementing this, physi-
ological measurement promises to reduce subjective bias 
and provide unobtrusive monitoring of team dynamics 
[21, 22]. In particular, technology-based physiological 
assessments can provide coaches and researchers with 

automated, noninvasive, and resource-efficient data for 
real-time insights into team dynamics [23].

Defined as the continuous assessment of team mem-
bers’ physiological states (e.g. with wearables) during 
collaborative tasks, team physiological dynamics (TPD) 
focus on the physiological interactions and is related 
with, for example, team coordination or team perfor-
mance [21]. As a possibility to move from individual 
team members’ data to the team level, physiological 
synchrony (PS) is a method to aggregate values for TPD 
[21]. PS is an important part of the team — and interper-
sonal dynamics [24], and has been studied in fields such 
as developmental psychology, neuroscience, and psycho-
therapy [25]. It involves capturing the similarity in physi-
ological signals collected from individual team members. 
The alignment of these signals during interactions to 
PS demonstrates the complex ways in which individu-
als connect, extending beyond basic communication to 
include physiological states [26, 27]. 

High PS among team members often indicates align-
ment in physiological responses, suggesting a level of 
cohesion that can support effective collaboration, espe-
cially in tasks requiring shared focus or coordinated 
effort [28, 29]. However, high PS does not always equate 
to optimal performance; certain tasks benefit more from 
individual flexibility than strict synchrony [25]. PS pri-
marily reflects implicit coordination, where team mem-
bers align their actions and attention without necessarily 
engaging in explicit communication, making it a valu-
able marker of underlying team dynamics rather than a 
direct measure of coordination or performance [26]. 
Studies have shown that better group processes, such as 
enhanced communication, coordination, and cohesion, 
are linked with PS [30–32]. These processes contribute 
to the team’s ability to work interdependently, adapt to 
changing demands, and effectively manage shared tasks, 
particularly in high-stakes environments [33, 34]. Stud-
ies have shown that PS in teams, such as of paramedics, 
correlates with better social coordination and group pro-
cesses [33]. Furthermore, Mønster et  al. demonstrated 
that PS among team members represents elements of 
team dynamics, such as cohesion and adaptability, par-
ticularly in cooperative tasks [29].

An important question in research on PS is as follows: 
What contributes to PS? Past research has revealed that, 
for example, common interpersonal processes, interper-
sonal interdependence, conditional demands, and simul-
taneous movements may contribute to PS (for a review, 
see [25]). Yet, the role of proximity between team mem-
bers has not been sufficiently explored as most studies on 
PS have used static settings without full-body movement, 
which excludes the exploration of this additional vari-
able by design [35, 36]. Assessing proximity, however, and 
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exploring its relation to PS seem promising as it can be 
automatically captured during team training using appro-
priate technology and is thus more feasible than classical 
observational approaches such as video analysis or real-
time observations (e.g. [37]). Therefore, the current study 
investigates the influence of proximity on PS.

PS is usually calculated for predefined time windows 
or events, resulting in a single PS value over the whole 
period [27, 38]. This approach is valuable for precise 
questions, defined time frames, and specific team tasks. 
However, it may be less suitable for timely high-resolu-
tion exploratory or process analyses. In order to enable 
a more detailed analysis of team dynamics and provide 
more detailed feedback on, for example relevant team 
behaviours, it would be beneficial to analyse the progres-
sion of synchrony over time. However, the potential of 
ongoing data has not yet been sufficiently explored [39]. 
Indeed, the majority of past work on PS in teams has 
compared different time windows of different events or 
similar with each other [24, 33, 40], providing an over-
view of, e.g., an entire training session but not of the 
course of PS dynamics within a specific situation. To 
assess PS, different metrics are available such as heart 
rate or heart rate variability [39]. Thereby, different met-
rics may be sensitive to different aspects of team dynam-
ics, as they measure different physiological mechanisms, 
so it is important to distinguish between them:

Heart rate (HR) reflects the frequency of heartbeats 
and serves as a fundamental indicator of cardiac func-
tion, assessing overall workload and cardiovascular fit-
ness. It typically increases during sympathetic activity 
(e.g. fight or flight) and decreases during parasympa-
thetic activity (e.g. relaxation) [41, 42]. Heart rate varia-
bility (HRV) metrics offer deeper insights into autonomic 
nervous system modulation [43]. Two important metrics 
are as follows:

(1) Root mean square of successive differences 
(RMSSD), which focuses on short-term variability 
primarily influenced by such as parasympathetic 
activity [44, 45].

(2) Standard deviation of NN intervals (SDNN) reflect 
overall HRV, encompassing broader autonomic reg-
ulatory mechanisms [42].

Therefore, RMSSD was prioritised in this study as a 
primary metric, while SDNN was included for compari-
son and exploration purposes. The compilation of these 
metrics provides a comprehensive assessment collec-
tion. Furthermore, these three metrics demonstrated that 

the same psychophysiological activation was observed 
in simulation training and in real-life situations [46]. As 
a result, they serve as a foundation for the research of 
physiological team dynamics.

This study serves as an exploratory analysis to deter-
mine whether PS patterns can be observed and assessed 
within dynamic team-based medical training. Research 
suggests that PS may reflect underlying team processes 
like coordination and cohesion, which are critical in high-
stakes environments [28, 34]. Unlike studies that link PS 
levels directly with performance outcomes, such as Møn-
ster et al. [29], our focus here is strictly on assessing PS 
without making judgements about whether synchrony 
correlates with team performance, and without compar-
ing different electrocardiogram (ECG metrics). In the 
context of ultra-short-term HRV measurements, RMSSD 
is widely recognised for its stability, even in intervals as 
short as 30 s [47]. Conversely, SDNN has shown limi-
tations in very short recordings due to its sensitivity to 
lower frequency oscillations, making it less reliable under 
2 min [48]. Previous studies have largely omitted to com-
pare different ECG metrics within studies to explore the 
different insights they might offer (for an exception, see 
Elkins et  al. (26)). Therefore, the aim of this study is to 
investigate different metrics of PS offer, namely HR, 
RMSSD, and SDNN, during a medical team training ses-
sion. The following aims will be tested for each of the 
three metrics:

1) As a proof of concept, an initial investigation was 
conducted whether PS differed depending on the 
nature of the task, more specifically during a cooper-
ative medical team task with a shared goal vs. a base-
line condition where the trainees did not interact.

2) The impact of team member proximity, scenario 
type, and the interaction of scenario and scenario 
order on PS during a medical team training over 
time was explored. (Aim 2.1) Since little is known 
about ongoing measures of PS in this area, different 
time frames were used and compared to each other. 
(Aim 2.2)

The aims were addressed in a mixed reality (MR) team 
training, which is a digital representation of a simulation 
training where one moves with one’s physical body in a 
virtual environment in combination with tangible ele-
ments [49] and is therefore a valuable tool for medical 
team training with a number of benefits. The technology 
enables the rapid transition between various scenarios 
and, e.g., the tracking of trainees’ movements.
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Methods
A multicentre observational study was conducted to 
examine the physiological dynamics of medical teams 
during an MR mass casualty training [50] with a conveni-
ence sample, employing high-frequency longitudinal data 
collection.

Participants
A total of 214 medical first responders participated in 
the multicentre training, which took place in Vienna, 
Heidelberg, Östersund, Ranst, and Madrid (149 iden-
tified as males, 64 as females; Mage = 39  years; Mjob expe-

rience = 13.3  years). Individuals with pacemakers were 
excluded from the data analysis (n = 6), but they partici-
pated in the training, and respective teams were analysed 
without dyads including these trainees. Ethical approval 
was granted by the Faculty of Behavioral and Cultural 
Studies Ethics Committee at Heidelberg University, Ger-
many (approval number: AZ Beu 2023 1/1). All partici-
pants provided written informed consent.

Materials
The MR system (Refense AG, Freienbach, Switzerland) 
employed an HTC VIVE Focus 3 (HTC Corporation, 
Taoyuan City, Taiwan) headset and a video optical system 
for full-body tracking, accurately capturing movement 
with 30–40 cameras (NaturalPoint, Corvallis, USA). The 
physical space allowed a 10 × 10 m area where partici-
pants could move freely, enhancing the immersive nature 
of the training. Manikins equipped with trackers allowed 
for realistic interactions, including pulse checks and tri-
age (for details, see Zechner et al. [50]). ECG monitoring 
was conducted using three lead ECG sensors, captur-
ing data at a 1000-Hz sampling rate (Bittium Inc., Oulu, 
Finland).

Procedure
Upon arrival, participants were equipped with ECG 
electrodes followed by MR gear, and three to four par-
ticipants were randomly assigned to teams for perform-
ing two first-triage training scenarios in random order. 

Baseline physiological data were collected, while partici-
pants stood still and fixated on a cross for 2 min (“Base-
line” in Fig.  1), followed by a 2-min preparation phase 
allowing free movement without specific tasks (“pre-
street”/ “pre-tunnel”). The scenarios simulated a bus 
crash mass casualty incident involving 21 injured individ-
uals (two of them were the mannequins) and was either 
situated on a street or in a tunnel (“street scenario”/ “tun-
nel scenario”).

Instructors, who were trained medical simulation pro-
fessionals with an additional 1-day VR training course, 
facilitated the sessions but did not intervene in the sce-
narios, allowing participants to organise and execute 
their tasks independently.

The team’s task was to be the first ambulance to arrive 
at the scene of an accident and perform first triage on 
the 21 casualties which were spread across the MR area. 
Participants needed to organise roles within the team, 
request additional support, and coordinate communi-
cation and movement to triage all injured individuals as 
quickly as possible.

Participants were expected to demonstrate effective 
teamwork by dividing roles, conducting accurate triage 
based on injury severity, and coordinating communica-
tion within the team to address each casualty promptly. 
Specific learning objectives included efficient task organ-
isation, correct application of triage procedures, and 
purposeful communication to relay information to the 
medical commander, aligning with standard emergency 
response protocols.

Each scenario lasted about 8–9 min and was followed 
by a short debriefing (“hot wash”) and a break. Following 
the second hot-wash session, a comprehensive debriefing 
was conducted. This process encouraged participants to 
reflect on their actions, analyse team performance, and 
discuss key takeaways for improvement. Instructors pro-
vided constructive feedback on decision-making, team-
work, and adherence to protocol. Detailed guidelines for 
both the hot-wash and debriefing sessions are available in 
Appendix 1 (for details, see Zechner et al. [50]).

Fig. 1 Timeline of the MR training protocol. The timeline begins with a 2‑min baseline period where participants stood still, focusing on a cross 
to establish physiological baselines. The pre‑street and pre‑tunnel stages, each spanning 2 min, serve as preparatory phases without specific tasks, 
leading into the main street and tunnel scenarios. Each scenario was followed by a hot wash. After the second hot wash, there was a break followed 
by a full debriefing. Interruptions between stages are shown by diagonal lines with clocks showing approximate durations. The order of the street 
and tunnel scenarios was random. All activities happened in a MR environment
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Data preparation and analysis
The pre-processing steps included calculations of the 
three ECG metrics and determination of the distance 
between team members using tracking data from MR 
equipment. HR was calculated using a 30-s moving aver-
age. For the SDNN and RMSSD metrics, calculations 
were performed over a 90-s period. To assess PS, we ana-
lysed the degree of similarity in the ECG metrics of all 
pairs of members per team using the dynamic time warp-
ing (dtw) algorithm [51], thus resulting in three values 
for three-member teams and six values for four-member 
teams. This algorithm calculates the distance between 
two signals and has been found to provide a more robust 
and flexible analysis than Pearson correlations for calcu-
lating PS [52]. Lower dtw scores indicate that the physi-
ological patterns of team members were more similar, 
suggesting higher levels of synchrony. Conversely, higher 
dtw scores indicate lower levels of synchrony [53]. A 
p-value of less than 0.05 was considered significant.

Proximity was calculated as the Euclidean distance 
between each pair of trainees in a team averaged for 
respective sampling intervals, where higher values indi-
cate a larger distance between trainees. Further detailed 
methods can be found in Appendix 2.

Aim 1: Task‑dependent physiological synchrony
To investigate whether PS changed depending on the 
nature of the task (i.e. cooperative task with a shared goal 
vs. baseline condition), PS per dyad within each team was 
determined for the baseline, the pre-scenario, and the 
scenario phases, respectively. Metrics of HR, RMSSD, 
and SDNN were used. Specifically, we calculated average 
dtw values per second per dyad, averaged them per phase 
(baseline, pre-scenario phases, and scenario phases), and 
compared the averaged values per phase using Wilcoxon 
signed-rank tests. We adjusted the results for multiple 
comparisons using the Benjamini–Hochberg procedure 
[54]. The effect sizes were reported using the rank-bise-
rial correlation r. According to Cohen’s guidelines, values 
around 0.1, 0.3, and 0.5 indicate small, moderate, and 
large effects [55].

Aim 2: Influencing factors on physiological synchrony 
over time
We used linear mixed-effects models (LMEs) to exam-
ine how proximity, scenario type, and the order of sce-
narios affected PS during the cooperative team tasks (i.e. 
scenarios) over time. We built the models starting with 
including only random effects, namely group, dyad, and 
number of sampling intervals, followed by iteratively 
including fixed effects (Barr et  al., 2013), namely prox-
imity, scenario type, scenario order, and the interaction 
between scenario and scenario order as independent 

variables. The best-fitting model was chosen based on the 
results of an ANOVA. Dtw values based on HR, RMSSD, 
and SDNN and for different sampling intervals (5, 10, 
15, 30, 60, 90, and 120 s) were used. The lower limit of 
5 s was necessary to apply the dtw algorithm, providing 
enough ECG data points for meaningful comparisons 
within each dyad [56, 57]. Studies suggest that short win-
dows in dtw applications enhance temporal resolution 
and minimise data distortion, critical for analysing physi-
ological synchrony dynamics [58]. The upper limit of 120 
s was chosen to align with the natural fluctuations of the 
training tasks and to ensure the relevance of the training 
to its dynamic nature. See Appendix 2 for more details.

Results
Missing data report
From the dataset comprising ECG measures of 214 par-
ticipants in 60 teams, 6 ECG recordings were excluded 
due to technical issues. Moreover, the position data for 
14 out of 120 scenarios for complete teams were miss-
ing due to technical issues. Thus, 208 participants with 
ECG data and 206 with position data in 60 teams were 
included in the data analysis.

Aim 1: Task‑dependent physiological synchrony

HR When measuring PS based on HR per phase, we 
observed higher dtw values, implying less PS, in the base-
line phase than in the pre-phases. Wilcoxon signed-rank 
tests revealed that these differences were significant and 
of small effect size (see Fig. 2).

Similarly, PS were lower at baseline than in the scenario 
phases and lower in the pre-scenario phases than in the 
corresponding scenario phases, all of moderate effect 
size.

RMSSD Conversely to the HR results, the analyses of PS 
based on RMSSD data revealed lower PS in the scenarios 
than in the baseline, with differences of small effect size. 
No other differences were observed (see Fig. 3).

SDNN The analyses of PS based on SDNN revealed a 
pattern similar to the HR results. PS was higher in the 
pre-scenario phases than in the baseline (as indicated by 
lower dtw values). Moreover, PS in the street scenario 
was higher than in the corresponding pre-phase, but not 
in the tunnel scenario (see Fig. 4). Effect sizes were small.
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Aim 2: Factors influencing physiological synchrony over time

Aim 2.1: Influencing factors The ANOVA revealed 
that the best-fitting LME for a sampling interval of 5  s 
included random intercepts for group, dyad and number 
of sampling intervals, and fixed effects for proximity, sce-
nario type, scenario order, and the interaction between 
scenario and scenario order. Taking this LME, the analy-
ses of PS based on HR revealed a positive effect of dis-
tance on dtw values, namely with increased distance 
resulting in a reduction in the PS of the respective dyad 

(as indicated by higher dtw values). This effect was found 
across all three metrics, although the values exhibited 
some variation from metric to metric. For further details, 
see Table 1 or Appendix 3.

In addition, analyses revealed an effect of scenario type, 
qualified by an interaction effect of scenario type × sce-
nario order on dtw values, indicating that, in the tunnel 
scenario, PS based on HR was lower than in the street 
scenario (higher dtw values) but only if the tunnel sce-
nario was experienced second. Opposite effects were 
found if PS was measured based on HRV (RMSSD and 
SDNN), namely that PS was higher in the tunnel scenario 
(lower dtw-RMSSD and SDNN values) than in the street 

Fig. 2 dtw/second values based on HR per phase, with raw data in the background. Additionally, significant effect sizes for comparisons 
between phases are shown, using | r |. The significance of the differences is Benjamini Hochberg corrected and denoted by asterisks. * indicates 
p < 0.05, and *** indicates p < 0.001. For better readability, the median and standard deviations (SD) of the dtw values are listed below the graph

Fig. 3 dtw/second values based on RMSSD per phase, with raw data in the background. Additionally, significant effect sizes for comparisons 
between phases are shown, using | r |. The significance of the differences is Benjamini Hochberg corrected and denoted by asterisks. * indicates 
p < 0.05, and *** indicates p < 0.001. For better readability, the median and standard deviations (SD) of the dtw values are listed below the graph
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scenario but only if the tunnel scenario was experienced 
second.

In this initial exploratory analysis, we focused on PS 
metrics to assess if they reveal meaningful patterns in 
team dynamics. Although additional data on control vari-
ables such as stress, age, and familiarity were collected, 
these were not included in this preliminary model to allow 
a foundational exploration of PS metrics. Future analyses 
will examine these control variables in relation to PS.

Aim 2.2: Model stability over sampling intervals The sig-
nificance of these influencing factors was then assessed 
across different sampling intervals (10, 15, 30, 60, 90, and 
120 s) to determine their stability over time:

• At shorter intervals (with up to 10  s for RMSSD, 
15 s for SDNN, and 30 s for HR), results remained 

stable, that is, similar effects as with 5-s intervals 
(see above) were revealed.

• At intermediate intervals (at 15 s for RMSSD, 30 s 
for SDNN, and 60 s for HR), the effect of scenario 
type began to fade (in HR also scenario order).

• At the longest intervals examined (starting at 60  s 
for each metric), the effects of scenario type and 
scenario order disappeared, with only proximity 
showing a consistent influence on PS up to 90 s for 
RMSSD and SDNN and 120 s for HR.

Specifically for each metric, the model stability 
remained as follows (see Table 2):

• HR’s responsiveness to the factors studied lasts for 
up to 30 s.

• RMSSD and SDNN show a more rapid decline in 
the stability of these effects, with a noticeable drop 
after 10 and 15 s, respectively.

Fig. 4 dtw/second values based on SDNN per phase, with raw data in the background. Additionally, significant effect sizes for comparisons 
between phases are shown, using | r |. The significance of the differences is Benjamini Hochberg corrected and denoted by asterisks. *Indicates 
p < 0.05. For better readability, the median and standard deviations (SD) of the dtw values are listed below the graph

Table 1 Model parameters for the influence models on PS

The results for all three ECG metrics were mapped for the sampling interval of 5 s. The parameters with a positive value are coloured blue, and those with a negative 
value are coloured orange. HR heart rate, RMSSD root mean square of successive differences, and SDNN standard deviation of NN intervals, CI confidence intervals.

 ns = p > 0.05

*p ≤ 0.05

***p ≤ 0.001
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Illustrative example This part provides an illustration 
of the potential of TPD in medical simulation training to 
reveal insights into previously “invisible” team dynam-
ics. It is intended to assist readers in comprehending this 
approach by demonstrating how synchrony values across 
different metrics are depicted and seem to covary with 
task switches.

As an example, Fig.  5 illustrates the dynamics of syn-
chrony values across different metrics for an entire team. 
The plot presents group means and confidence intervals 
for dtw values over time, with an interval duration of 5 s. 
Fluctuations in synchrony metrics indicate different lev-
els of physiological alignment between different dyads. 

Higher dtw peaks indicate lower PS. Three PS metrics 
are depicted: HR in red, RMSSD in yellow, and SDNN in 
green. To explore how different task demands affect team 
synchrony, we identified different phases of the team task 
by analysing the corresponding training video recording. 
Thereby, the timestamps of the interactions in which all 
trainees were involved were recorded and tasks classified. 
Figure 5 shows the four identified tasks in which all train-
ees shared their attention, namely (1) when taking part in 
the briefing at the beginning of the scenario, (2) when the 
instructor called out a danger, (3) when the team counted 
patients per triage category and wrapped up, and (4) 
when the team discussed the next steps. It can be seen 
that, for example, during “communication of danger” 
(“Methods” section), there is a marked desynchronisation 
in HR and SDNN, while there is a constant level of high 
PS during the final discussion (“Discussion” section).

Table 2 Stability of all factors in the model when they remain significant

Yes means all factors remained significant, and no means at least one factor did not remain significant. The columns for 90 and 120 s are not displayed as their 
stabilities are congruent with the column for 60 s. Observations represent the number of sampling intervals used for the calculation. HR heart rate, RMSSD root-mean-
square of successive differences, and SDNN standard deviation of NN intervals

Fig. 5 Time series of averaged PS metrics — HR, RMSSD, and SDNN — for a medical team during training. The shaded areas represent standard 
errors. The table on the right summarises these events. Vertical dashed lines indicate key events labelled with circled numbers, as represented 
in the table on the right side. X‑axis is the time of training represented in hours and minutes. HR heart rate, RMSSD root mean square of successive 
differences, and SDNN standard deviation of NN intervals
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Discussion
This study aimed to explore PS within a medical team 
training context.

Specifically, the research had two primary aims. 
Firstly, it sought to assess how PS differs across dif-
ferent training phases and tasks. Secondly, it aimed 
to explore the impact of various influencing factors, 
including proximity, scenario type, and the scenario 
order, on team synchrony over time. These aims were 
investigated using different heart metrics, namely, HR, 
RMSSD, and SDNN. Although PS has the potential 
to serve as a valuable real-time feedback tool in team 
training, this study did not focus on PS in that capac-
ity. Instead, our primary aim was to explore PS as a 
measure of team cohesion and implicit coordination. 
While feedback applications were outside the scope 
of this study, PS could nonetheless be developed as a 
structured, objective feedback tool to provide immedi-
ate insights into team dynamics during training.

Our findings indicate significant differences in PS 
depending on the nature of the task. Specifically, 
higher synchrony was observed during cooperative 
team tasks with HR and SDNN compared to more 
uncoordinated tasks. This is in line with previous 
research that has shown that tasks that require active 
coordination increase PS, as they require synchronised 
efforts and shared mental representations [59]. Addi-
tionally, proximity and the specific conditions of the 
training scenarios were found to influence synchrony 
during the cooperative team task, with proximity con-
sistently enhancing PS.

These findings align with team dynamics theory, 
which emphasises the role of cohesion and shared 
mental models in promoting coordination and adapt-
ability, especially in high-stakes environments [9]. 
The observed increase in PS during cooperative tasks 
likely reflects implicit coordination, where team mem-
bers’ physiological responses align without the need 
for explicit communication. This type of implicit syn-
chrony is essential in scenarios that require quick, 
cohesive responses [60, 61]. However, it is important to 
note that while high PS indicates cohesion, adaptabil-
ity and individual flexibility may be equally crucial in 
certain tasks that benefit from less rigid alignment [10].

The ensuing discussion will be divided into two main 
sections following the aims: “Aim 1: Task-dependent 
physiological synchrony”, focusing on task-depend-
ent PS and its sensitivity to team dynamics using HR, 
RMSSD, and SDNN metrics, and “Aim 2: Interpreta-
tion of factors influencing PS”, exploring the interpre-
tation of factors influencing PS, such as proximity and 
scenario type. This is followed by a general discussion 

that bridges the empirical findings with practical 
applications in medical team training.

Aim 1: Task‑dependent physiological synchrony
In evaluating PS during medical team training, we 
employed HR, RMSSD, and SDNN. Both HR and SDNN 
demonstrated increased PS during active team tasks 
in comparison to baseline and pre-scenario phases. 
This suggests that they are sensitive to changes in team 
dynamics, which is consistent with previous work (e.g. 
Elkins et al. [26] or Mønster et al. [29]).

Yet, the effect size of HR metrics was moderate, 
whereas that of SDNN was only small. In contrast, 
RMSSD displayed an opposite pattern with decreased PS 
in cooperative scenarios. This discrepancy may be attrib-
uted to the inherent variability of RMSSD and its dis-
tinct physiological underpinnings. Research shows that 
increased HR is associated with reduced HRV, as higher 
HR leads to less variability in interbeat intervals [62]. This 
relationship is due to both physiological and mathemati-
cal factors, with HRV values being more closely aligned 
and therefore automatically increasing PS values. These 
effects highlight how HR influences HRV and subse-
quently PS measures [62].

Results show that HR and SDNN were consistent, indi-
cating increased team cohesion, while RMSSD varied, 
reflecting complex interactions. Additionally, these met-
rics changed over time (Fig. 5), suggesting that they rep-
resent different aspects of team dynamics. Despite these 
findings, there is a lack of guidance in the literature on 
how to interpret these differences, highlighting the need 
for further research [26].

HR and SDNN are consistent in detecting increased PS 
due to coordinated actions and shared stress responses 
[42]. RMSSD, which reflects parasympathetic activity, 
varies more during high-stress tasks, resulting in reduced 
PS [63]. While the exact reasons for these discrepan-
cies are unclear, the importance of these measures in 
assessing team dynamics remains evident [64]. Further 
research is essential to understand how best to use these 
metrics in relation to training objectives and the nature 
of the task.

Aim 2.1: Interpretation of factors influencing PS
Understanding factors that influence PS can help opti-
mise team dynamics and improve collaborative efforts. 
Previous studies have revealed some of these factors. 
For example, larger group sizes tend to show higher PS 
due to the increased need for coordination [28], and 
positive interpersonal dynamics, such as strong team 
cohesion and effective communication, enhance PS 
among team members [65]. Unlike other studies that 
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utilised avatars independent of one’s own body or 
static settings, this study utilised a position-tracking 
MR system in which participants had to move around 
a room to perform a team task, allowing us to assess 
the effect of proximity on PS, which may can be seen 
as a proxy for close collaboration.

Proximity consistently demonstrated a robust posi-
tive impact on synchrony, indicating that closer physi-
cal spacing between team members enhances their PS. 
To the best of our knowledge, such an explicit link has 
not yet been established, although interpersonal rela-
tionships have already been mentioned as a relevant 
factor for PS in various reviews [25, 32]. It is crucial to 
acknowledge that while high PS can signify good team 
performance during collaborative tasks, lower PS may 
be advantageous for tasks that necessitate complemen-
tary actions or independent thinking [26].

Moreover, our analyses revealed an impact of scenario 
type and the interaction with order on PS, but effects 
varied, particularly noticeable in shorter time intervals. 
These effects suggest that immediate task environments 
and the sequence of tasks can quickly alter team dynam-
ics, with different scenarios potentially invoking varied 
stress levels or learning adaptations, which, in turn, 
may influence PS. For example, previous research has 
shown that complex or high-stress scenarios may result 
in increased physiological arousal, which in turn affects 
synchrony patterns [25]. Specifically, higher levels of 
stress may decrease PS, as stress leads to increased indi-
vidual stress responses [66].

In order to gain a deeper understanding of the pro-
cesses involved in a scenario, we conducted an exem-
plary analysis of a sample scenario. This analysis 
provides perspectives into several factors that could 
influence PS at the scenario level (see Fig. 5):

• Comparative analysis: Compare dynamics of syn-
chrony across dyads to identify which pairings 
have higher or lower levels of synchrony during 
specific situations. This can help to understand the 
dynamics of team interactions or identify events 
that have led to desynchronisation.

• Metric-specific insights: Different PS metrics may 
show different patterns of synchrony. For example, 
HR and SDNN may show higher synchrony during 
periods of high stress, whereas RMSSD may reflect 
more subtle autonomic adjustments.

• Implications for training: The findings can be used 
to tailor team training programmes. For example, 
pairs with lower synchrony might benefit from tar-
geted interventions to improve their collaborative 
efficiency.

Aim 2.2: Sampling intervals
While comparing PS measured during interactive tasks 
with PS during baseline conditions is a common method 
to isolate the impact of interaction on synchrony [25, 67], 
a longitudinal measurement using finer intervals/a higher 
temporal resolution may provide deeper insights into the 
time course of PS [17]. Thereby, determining the right 
sampling intervals is important [68]. Intervals from 5 to 
120 s were used in this study.

The analysis of using different time intervals (“Aim 3: 
Sampling intervals”) revealed that the stability of fac-
tors influencing PS varied by metric and interval length. 
HR demonstrated stability for up to 30 s. In contrast, 
RMSSD and SDNN demonstrated stability up to 10 and 
15 s, respectively (see Table 2). In comparison to “Aim 1: 
Task-dependent physiological synchrony”, HR, SDNN, 
and RMSSD show similar key values and parameters at 
higher temporal resolution than at lower temporal reso-
lution, suggesting that averaging over longer periods may 
mask short-term synchronisation patterns, suggesting a 
shift towards a more averaged state of team synchrony 
that may not reflect rapid fluctuations. Higher resolution 
analysis reveals more consistent moment-to-moment 
physiological synchronisation among team members. 
The use of 5-s intervals in comparison to higher inter-
val durations increases temporal resolution, resulting in 
a greater number of observations (43,248 at 5 s versus 
3543 at 60 s, as shown in Table  2). This higher number 
of observations has the potential to affect p-values and, 
consequently, the assessment of result significance [69].

From our analyses, we would conclude that shorter 
intervals, particularly the 5-s minimum, seem to be opti-
mal for detailed, dynamic analysis, as evidenced by the 
high number of observations and enhanced sensitivity to 
rapid changes in team synchrony [17]. It is also crucial to 
consider the temporal aspects of both the biological sys-
tems under investigation and the psychological processes 
to underpin their activity within that specific context [68].

Overall discussion
PS in various measures (electrodermal activity (EDA), 
ECG, pupillometry, etc.) has been found to be an indi-
cator of, for example, agreement [38], engagement [70], 
team performance [26–28, 71], group cohesion [72], con-
scious processing [73], social coordination [33], relation-
ships [25], teamwork effectiveness [74], collective mental 
effort [75], and team cognitive load [76]. Yet, most of 
these studies have been conducted in minimal settings 
with minimal physical movement at a computer to avoid 
sensor artefacts. Given that movements can introduce 
artefacts or act as confounding factors, it is questionable 
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whether the existing work can be transferred to highly 
physical dynamic situations such as medical team train-
ing. Here, we extend prior research by examining the 
impact of movement on team dynamics. Previous 
research indicated the potential of applying position 
tracking in the context of simulation training, offering an 
additional layer of debriefing information [77].

PS shows promise in understanding teamwork dynam-
ics, particularly in how physiological alignment relates 
to effective communication, cohesion, and adaptability 
within teams [24, 29]. In high-stakes settings, such as 
emergency response teams, high PS levels could indi-
cate well-aligned team dynamics and moments of criti-
cal coordination, suggesting synchrony as a marker of 
readiness and engagement [26]. Conversely, low PS might 
reveal communication gaps, identifying areas where 
teams may need additional support [21].

The relevance of PS within teamwork also opens new 
applications for real-time feedback systems. PS metrics 
could be applied in simulation-based training to provide 
objective insights, allowing trainers to intervene pre-
cisely when synchrony drops and potentially improving 
outcomes in high-pressure situations [33]. Furthermore, 
as PS provides a not-interfering way to observe team 
dynamics over time, it could help refine team-building 
strategies across various industries by supporting a 
deeper understanding of team cohesion [25].

An important consideration in using PS metrics within 
team-based assessments is ecological validity. While the 
controlled nature of simulation training allows for con-
sistent and replicable measurements, it may not fully 
capture the variability present in real-life teamwork 
environments. Previous studies highlight that ecological 
validity can be affected by factors such as artificial set-
tings, limited contextual cues, and constrained task vari-
ations, which may impact physiological responses and 
synchronisation [78]. Using mixed reality environments, 
as employed in this study, offers a promising approach 
by combining realistic scenarios with high measurement 
accuracy, thus enhancing ecological validity while retain-
ing data consistency [49].

It is important to recognise that no single measure 
can comprehensively capture the overall performance 
of individuals or teams. To avoid the pitfalls of relying 
on a single inadequate criterion, it is crucial to measure 
both team dynamics and outcomes [79]. While auto-
mated TPD and performance measures offer valuable 
insights, they are not a standalone solution and should 
be coupled with nonautomated forms of measurement 
[80]. This collaborative approach should not be consid-
ered a replacement for existing evaluation methods but 
rather an enhancement that allows for more in-depth 
analysis and debriefing of team training. Physiological 

patterns between dyads and groups reflect meaning-
ful changes in social processes, such as the health of 
interpersonal relationships [21, 25]. The utilisation of 
TPD as an analytical tool can provide deeper insights 
by measuring subconscious states alongside other fac-
tors throughout exposure [81]. By incorporating PS 
into performance evaluations, we could gain a more 
holistic understanding of team dynamics, which could 
significantly enhance traditional methods of team per-
formance assessment.

Practical considerations
One relevant aspect of using a new evaluation approach 
is the question of feasibility. The use of three-lead ECG 
measures permitted the acquisition of high-resolution PS 
measures of HR, RMSSD, and SDNN with minimal inva-
siveness. The handling of the ECG devices for recording 
was not time-consuming, requiring approximately 3 min 
per trainee. This was due to the simplicity of the place-
ment, which could be achieved with adhesive electrodes. 
Furthermore, the process analysis did not necessitate cal-
ibration or similar procedures. Consequently, it was pos-
sible to monitor up to 4 team members simultaneously, 
with only 6 data sets being lost out of 208. The data pro-
cessing was automated to a considerable extent, which 
would facilitate the use of the approach in real time.

At the same time, the position tracking and simula-
tion were integrated into the MR system, which usually 
did not present any problems. However, it is important 
to note that a system of this nature comes with signifi-
cant costs and may not be necessary for all applications, 
particularly when the calculation of, e.g., ECG-PS values 
is the primary aim. While this study provides preliminary 
evidence that PS measurements can offer insights into 
collaboration, further validation is needed to fully inte-
grate these metrics into practical feedback systems. How-
ever, in the absence of a “plug-and-play” solution, further 
technical development, experience, and a streamlined 
process would be required for its use in traditional simu-
lation training.

While ECG-based measurements of PS are minimally 
invasive, certain ethical and operational considerations 
are required for implementation [22]. In natural set-
tings, the ECG setup remains the same, although position 
tracking may require alternatives such as GPS or video-
based methods [37, 82]. Video recording of the training 
scenario can also provide valuable contextual data for 
later debriefing and analysis.

Strengths and limitations
There are several limitations to this study. First, the lack of 
a non-MR control group means that we cannot confirm 
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whether the PS observed in MR would also occur in real-
life settings. Future research should focus on reproducing 
these results in real-life scenarios to validate the findings 
outside of VR environments. Second, while we collected 
additional data on control variables, including stress, age, 
and team familiarity, we focused this exploratory analy-
sis on PS metrics to determine if they could reveal mean-
ingful patterns and insights into team dynamics. Future 
studies in this project could further analyse these vari-
ables to assess their impact on PS. Third, the within-sub-
jects design introduces the potential for carryover effects 
and increased familiarity between scenarios. Although 
scenario order was included as a fixed effect to control 
for familiarity, some residual carryover effects may still 
influence the results. A between-subjects design could 
mitigate this. Lastly, in order to maintain the process as 
automated and therefore as simple and straightforward 
as possible, we did not assess the specifics of task fulfil-
ment, such as how, when, and what the trainees worked 
on together.

This approximation has limitations, as two trainees who 
are very close to each other can stand back to back with-
out actually working together. This means that the effect 
of proximity on PS that we found may be underestimated. 
While proximity proved an effective measure of collabo-
ration due to the nature of our training setup, it would be 
beneficial in future research to incorporate more direct 
measures of team interaction. Metrics such as team per-
formance, outcomes, and communication could provide 
a deeper understanding of how team dynamics is related 
to PS. These metrics, combined with physiological data, 
could offer a more comprehensive model of team effec-
tiveness in high-stakes environments.

The VR itself could be a problem, since the physical, 
visible, and local closeness could play a role for PS. The 
results of an audio listening task indicate that conscious 
processing of narrative stimuli and attention modu-
lates PS based on HR, making it a potential marker for 
cognitive states in both healthy individuals and patients 
with disorders of consciousness [73]. This is particularly 
intriguing, given that participants completed the task 
independently without physical proximity to others. 
Other works in a VR setup demonstrated that higher PS 
based on EDA correlates with better task performance, 
thereby emphasising the value of physiological alignment 
in enhancing team dynamics [52]. In addition, electroen-
cephalography (EEG)-based PS in VR can induce similar 
levels of inter-brain synchrony as in real-world environ-
ments [83]. In a VR context, not facing each other could 
reduce PS. However, verbal interaction alone can achieve 
synchronisation, as Gupta et al. [84] found that interac-
tion partners aligned their blink rates while talking, even 
when positioned back to back. This suggests that verbal 

interaction may be sufficient for synchronisation, mak-
ing blink rate a useful index even in virtual teams [78, 84]. 
This evidence suggests that the VR setup should not pre-
sent a problem for deriving PS.

This study’s exploratory focus on physiological syn-
chrony without outcome measures limits the ability to 
correlate PS directly with team performance metrics. 
Future studies should aim to integrate outcome-based 
metrics, such as team cohesion or task completion, to 
clarify PS’s role in reflecting team dynamics in high-
stakes environments.

Future direction
As the next phase in this research, correlating PS with 
concrete team performance measures, such as the Team 
Emergency Assessment Measure [13], will be essential. 
Exploring PS as an indicator of task efficiency, cohesion, 
or other outcome-based metrics can provide valuable 
insights into the role of physiological alignment in opti-
mising team training. A further step should involve test-
ing scenarios where close teamwork is crucial to assess if 
PS can enhance collaborative performance in more prac-
tical settings. Furthermore, correlating and linking PS 
with team performance outcomes, utilising tools such as 
the Team Emergency Assessment Measure tool (Cooper 
et al. [13], validated for VR by Wespi et al. [85]), will facil-
itate a more profound comprehension of the interrela-
tionship between performance and team dynamics. The 
combination of different measures and their respective 
metrics will further refine these correlations [71], which 
could also be achieved in VR, given the tool’s capacity to 
facilitate eye tracking or other measures for data collec-
tion during simulations [86]. Finally, it is crucial to con-
sider the needs and preferences of individual trainees and 
take necessary measures to ensure data protection.

Practical applications and implications for medical team 
training
The findings of this study highlight promising appli-
cations of PS in medical team training, especially for 
providing real-time feedback to enhance team perfor-
mance. Traditional team training in medical contexts 
often involves debriefing sessions post-scenario, which 
improves communication, coordination, and role clar-
ity—key factors in patient outcomes and team efficacy 
[14, 79]. Implementing PS metrics in real-time could pro-
vide automated, objective, high-resolution feedback on 
team synchrony, enabling instructors to monitor cohe-
sion and stress responses dynamically during high-stakes 
situations [21, 26, 27].

The use of VR and MR in medical training expands 
these possibilities further by simulating real-life clinical 
scenarios in controlled environments. For instance, MR 
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and VR have been applied successfully in procedural and 
skills-based training by enabling immersive, hands-on 
experiences without patient risk, as shown in studies on 
acute care and invasive procedures [87, 88]. These tech-
nologies enhance teamwork skills, situational awareness, 
and adaptability, critical to clinical settings, by allowing 
repeated practice and real-time feedback in a realistic 
environment. Combining VR/MR with PS monitoring 
could improve training by helping trainers identify low-
synchrony moments in real time, facilitating interven-
tions that promote effective collaboration even under 
stress [89, 90].

By combining PS monitoring with simulation-based 
training, medical educators could adopt a more nuanced 
approach to team development, addressing both imme-
diate and long-term training needs across diverse medi-
cal scenarios. This approach aligns with the shift towards 
data-driven and adaptive training methods, providing a 
more comprehensive understanding of team dynamics 
that benefits clinical outcomes.

Conclusion
This study shows that PS measured through ECG data 
is sensitive to variations during a complex medical 
team task. Different ECG metrics can provide different 
insights, so it is important to consider the timing and 
processes underlying their activity in specific contexts.

Our findings suggest that high-resolution monitoring 
with smaller sampling intervals (e.g. 5  s) shows PS val-
ues and their courses and how factors such as proximity, 
scenario, and scenario order affect them. Although our 
observations on interactions cannot be generalised from 
a single example, they indicate potential for using PS as 
an indicator of team performance and cohesion.

In conclusion, our study contributes to the growing 
body of knowledge on the application of physiological 
measures in evaluating team dynamics. Our findings sug-
gest that physiological synchrony could offer valuable 
insights into team cohesion and performance, poten-
tially serving as a tool for real-time assessment in train-
ing environments. While promising, the application of PS 
metrics in broader contexts remains to be fully explored. 
Future research could further explore the applicability 
of PS metrics across various high-stakes, collaborative 
settings beyond medical training, providing insight into 
broader implications for teamwork dynamics in both 
clinical and non-clinical contexts.
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